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importance of the same for designing robust second order schemes for MHD. Second order
accurate divergence-free schemes for MHD have shown themselves to be very useful in
several areas of science and engineering. However, certain computational MHD problems
would be much benefited if the schemes had third and higher orders of accuracy. In this
paper we show that the reconstruction of divergence-free vector fields can be carried
Magnetohydrodynamics ouF with better. than secoqd order accuracy. As a result, we design divergence-free
Numerical methods weighted essentially non-oscillatory (WENO) schemes for MHD that have order of accuracy
Reconstruction better than second. A multi-stage Runge-Kutta time integration is used to ensure that the
WENO schemes temporal accuracy matches the spatial accuracy. While this is achieved quite simply up to
third order in time, going beyond third order is most simply achieved by using the ADER-
WENO schemes that are detailed in a companion paper. (ADER stands for Arbitrary Deriv-
ative Riemann Problem.) Accuracy analysis is carried out and it is shown that the schemes
meet their design accuracy for smooth problems. Stringent tests are also presented show-
ing that the schemes perform well on those tests.

© 2009 Elsevier Inc. All rights reserved.

Keywords:

1. Introduction

The magnetohydrodynamic (MHD) equations play an important role in many areas of astrophysics, space physics and
engineering. Typical applications in those areas require one to capture flow on a range of scales in a way that is as dissipa-
tion-free as possible. As a result, there has been considerable interest in bringing accurate and reliable numerical methods to
bear on this problem. The MHD system of equations can be written as a set of hyperbolic conservation laws. As a result, early
efforts concentrated on straightforwardly applying second order total variation diminishing (TVD) techniques to the MHD
equations. This was done by Brio and Wu [13], Zachary et al. [41], Powell [33], Dai and Woodward [16], Ryu and Jones
[35], Roe and Balsara [34], Balsara [1,2], Falle et al. [25], Dedner et al. [18] and Crockett et al. [15]. The schemes by Powell
[33] and Dedner et al. [18] were based on modifying the MHD equations to arrive at innovative methods for transporting
away any divergence that might be generated in the magnetic field. Recent efforts have focused on understanding the struc-
ture of the induction equation:

oB

S+ VX (B)=0 (1)
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and the divergence-free evolution that it implies for the magnetic field. In Eq. (1), B is the magnetic field, E is the electric field
and c is the speed of light. The magnetic field starts out divergence-free because of the absence of magnetic monopoles and
Eq. (1) ensures that it remains divergence-free for all time. The electric field is given by:

E=-vxB 2)

where v is the fluid velocity. For the rest of this paper we will simplify the notation by making the transcription cE — E. We
pick CGS units because they are commonly used in astrophysics. The methods presented here go through just as easily in any
other units. Brackbill and Barnes [11] have shown that violating the V - B = 0 constraint leads to unphysical plasma transport
orthogonal to the magnetic field. This comes about because violating the constraint results in the addition of extra source
terms in the momentum and energy equations. Yee [40] was the first to formulate divergence-free schemes for electromag-
netism. Brecht et al. [12] and DeVore [20] did the same for flux corrected transport (FCT)-based MHD. Evans and Hawley [24]
presented a divergence-free scheme for MHD that was based on an artificial viscosity formulation. Following Brecht et al.
[12], Evans and Hawley [24] realized that the divergence-free constraint had to be respected, inventing the term constrained
transport to describe such schemes. Dai and Woodward [17], Ryu et al. [36], Balsara and Spicer [9,10], Balsara [4], Toth [39],
Londrillo and DelZanna [32], Gardiner and Stone [26] and Li [31] showed that simple extensions of higher order Godunov
schemes permit one to formulate divergence-free time-update strategies for the magnetic field. Balsara and Kim [6] inter-
compared divergence-cleaning and divergence-free schemes for numerical MHD. They found that if the test problems are
made stringent enough the schemes that are based on divergence-cleaning show significant inadequacies when used for
astrophysical applications. Thus it is advantageous to design robust schemes for numerical MHD that are divergence-free,
as was done in [4]. In that paper we used the divergence-free reconstruction of vector fields from Balsara [3] to present a
formulation that overcame several inconsistencies in previous formulations.

Higher order schemes for MHD have been attempted. Jiang and Wu [30] and Balsara and Shu [8] experimented with
weighted essentially non-oscillatory (WENO) schemes. Another line of effort stems from the work of Londrillo and DelZanna
[32]. These schemes were based on a finite difference formulation. For certain types of applications, especially those involv-
ing non-uniform meshes or adaptive solution strategies, finite volume formulations become essential. We therefore present
a finite volume, divergence-free scheme for MHD that goes beyond second order of accuracy. We rely on efficient WENO
interpolation strategies that were designed in Balsara et al. [7] to make a high order reconstruction. The novel element intro-
duced in this paper consists of extending the divergence-free reconstruction of magnetic fields from Balsara [3,4] to all or-
ders up to fourth. When coupled with an appropriately accurate Runge-Kutta (RK) time integration scheme by Shu and
Osher [37,38], we get a set of WENO schemes that have a spatial and temporal accuracy that exceeds that of second order
schemes.

In Balsara et al. [5] we presented a new class of higher order schemes for the Euler equations. In such formulations the lower
moments of the solution are retained while the higher moments are reconstructed, resulting in low storage schemes with better
than second order accuracy. Balsara et al. [7] extended some of the interpolation techniques from Balsara et al. [5] to present
high accuracy schemes for the Euler and MHD equations. Building on their work in Dumbser et al. [21], we also presented ex-
tremely efficient ADER (for Arbitrary Derivative Riemann Problem) schemes for second to fourth order accurate temporal evo-
lution of the Euler and MHD equations. Furthermore, we presented efficient strategies for constructing the high order accurate,
space-time averaged fluxes and electric fields that are needed in a high accuracy MHD scheme. Since the divergence-free recon-
struction of magnetic fields at high orders is a challenging problem in its own right, a thorough exposition of that problem was
deferred to the present paper. As a result, Balsara et al. [7] and the present paper complement each other. A reader seeking to
make the most efficient implementation of a finite volume scheme for divergence-free MHD should couple the divergence-free
reconstruction presented here with the ADER-WENO techniques. The computational cost of the resulting schemes are cata-
logued in the companion paper on ADER-WENO schemes, where it is shown that the increasing cost with increasing accuracy
is handily offset by an improvement in the quality of the solution provided by the scheme. The divergence-free reconstruction
presented here can also be used with Runge-Kutta time-stepping to obtain adequate schemes for divergence-free MHD. Such
schemes prove easier to code up and are presented here. However, our experience has been that once one goes past second order
the RK-WENO schemes are not as computationally efficient as ADER-WENO schemes, and the reasons for this observation have
already been catalogued in [21]. To obtain fourth or higher order of accuracy in space and time, we in fact recommend use of the
ADER-WENO schemes instead of the RK-WENO schemes proposed here.

In Section 2 we catalogue the divergence-free reconstruction of vector fields for higher order schemes. In Section 3 we
provide a step by step description of the scheme. In Section 4 we provide an accuracy analysis and in Section 5 we present
several test problems.

2. Higher order divergence-free reconstruction of vector fields

Most finite volume schemes that are designed to evolve the magnetic field in divergence-free fashion try to obtain a dis-
crete form of the divergence-free constraint over finite volumes which coincide with the definition of the fluid variables. The
only exceptions are a pair of schemes presented in Toth [39] where the discrete form of the divergence-free constraint is
asserted on a mesh that is dual to the mesh on which the fluid variables are defined. For most applications, especially when
adaptive solution strategies are desired, it is most advantageous to have a scheme where the divergence-free constraint and
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the fluid variables are defined on the same set of finite volumes. For all such schemes, it is essential to define the components
of the magnetic fields at the face-centers and we follow that trend here.

In this section we study the divergence-free reconstruction of a face-centered divergenceless vector field for schemes
with better than second order accuracy. In particular, we focus on the third and fourth order cases because they can be listed
succinctly and are likely to be generally useful. The second order accurate divergence-free reconstruction of vector fields was
studied for Cartesian meshes in Balsara [3]. In [4] we extended this to logically rectangular meshes with diagonal metrics. In
that paper we also considered the second order accurate divergence-free reconstruction of vector fields on tetrahedral
meshes and that too can be extended to higher orders. Since the method was described in detail in [3], in this paper we will
focus on cataloguing results for the higher order case. The reader who wants a detailed description is referred to the above-
mentioned papers.

For the rest of this work we assume that each zone has been mapped to a unit cube with local coordinates
(x,y,2) € [-1/2,1/2] x [-1/2,1/2] x [-1/2,1/2]. A natural set of modal basis functions within that zone or on its faces
would consist of tensor products of the Legendre polynomials Po(x), P1(x) and P,(x). The first few Legendre polynomials
are given by:

Pox) =1; Pi(x) =% Py(x) =% —11—2; P3(x) =X’ —o=x;  Pa(x) =x* —%Xz +53ﬁ 3)
The above Legendre polynomials have just been suitably scaled to the local coordinates of the zone being considered. The x-
component of the magnetic field in the upper and lower x-faces of this zone can be projected into these bases as:
B.(x = +1/2,y,2) = By" + B}"P1(y) + B} "P1(2) «— second order
BXiPz( )+ B"iPl ()P (2) + B Py(2) «— third order (4)
+ B P3(y) + BiLPa(y)P1(2) + B Py (V)P2(2) 4+ BiPs(2) «— fourth order

yyy yyz yzz

Here B}, B"i and B}* are the moments that would be needed in a second order accurate representation in the basis functions
that we have chosen B}, B, and B}, are the additional moments for a third order accurate representation in the same set of
basis functions. B;yiy, B;jz, B;jz and B’Z‘jz are the further moments that are needed for a fourth order accurate representation,
again in the same set of basis functions. Consequently, while Eq. (4) shows all the facial moments that are needed up to
fourth order, the arrows in Eq. (4) show the terms that are needed for each specific order of accuracy. We can write similar
expressions for the y- and z-components of the field in the appropriate zone faces as:

By(x,y = £1/2,2) = By* + B,*P1(x) + B/*P1(2) — second order
4 BYEPy(X) + BEP (0)Py(2) + BPy(z)  — third order
+ Bl P3(X) + Bl Py (X)Py (2) + B, P1(x)P2(2) + BLP3 (2) «— fourth order (5)
B.(x,y,z = +1/2) = Bf" + B;"P1(x) + B, "P1(2) — second order
+ B P2 (x) + B, Py (X)P1(y) + B}, P, (y) « third order

+ BoPs (%) + Boy P2 (X)P1 (y) + By P1(X)P2(y) + B;,,Ps(y) < fourth order (6)

XXX XXy Xyy yyy

To reconstruct the field in the interior of the zone we pick the following functional forms for the fields:

By(x,y,2) = ap + axP1(x) + a,P1(y) + a.P1(2)
+ P2 (X) 4 axyP1(X)P1(¥) + ax.P1(X)P1(2) «— second order
+ Ay Py (¥) + GxyyP1 (X)P2(Y) 4 Az2P2(2) 4 QuzeP1 (X)P2(2) 4 a2 P1 () P1(2) + GxyP1 (X)P1(¥)P1(2)
+ AoxP3(X) + Gy P2 (X)P1 (V) + AxxzP2 (X)P1(2) « third order
+ GyyyP3(Y) + Ay P1(X)P3(Y) + QyyzP2 (V)P1(2) + GyyzP1 (X) P2 (¥)P1(2)
+ AyzzP1 (Y)P2(2) + QyzeP1 (X)P1(Y)P2(2) + Uz22P3(2) + OxzzeP1 (X)P3(2)
+ O Pa(X) + Ay P3 (X)P1 (V) + Gz P3 (X)P1 (2)
+ Gy P2 (X)P2(Y) + QzzP2 (X)P2(2) «— fourth order (7)
By(x.y,2) = bo + bxP1(x) + byP1(y) + b-P1(2)
+ byyP2(¥) + bxyP1(X)P1(¥) + by:P1(¥)P1(2) — second order
+ bxxPZ( ) + bxxyPZ( ) ( ) + bzzPZ( ) + byzzpl (,V)PZ(Z) + bxzpl(x)Pl(Z) + bxyzpl (X)P](_V)P](Z)
+ byyyP3(¥) + bayyP1(X)P2(y) + by P2 (y)P1(2) « third order
+ bP3(X) + Doy P3 (X)P1 (V) + bxeP2 (X)P1(2) + byyzP2 (X)P1(¥)P1(2)
+ byazP1 (X)P2(2) + byyzzP1(X)P1(¥)P2(2) + bz2:P3(2) + byzz:P1(¥)P3(2)
+ byyyyPa(y) + buyyyP1(X)P3(y) + byyyP3(y)P1(2)
+ byyy P2 (X)P2(¥) + byy.P2(¥)P2(2) — fourth order (8)
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B,(x,y,Z) = Co + CxP1(x) + ¢,P1 (V) + c.P1(2)
+ CzP2(2) + ¢ P1(X)P1(2) + ¢;.P1(¥)P1(2) «~— second order
+ CxP2(X) + CozP2(X)P1(2) + CyyP2 (V) + CyyzP2(¥)P1(Z) + CxyP1(X)P1(Y) + CxyzP1(X)P1(¥)P1(2)
+ C222P3(2) 4 CxzzP1(X)P2(2) + €y22P1(Y)P2(2) «— third order
+ Cxxx 3(X) + Cxxsz3( )Pl( ) + CxxyPZ (X)Pl (y) + CxxszZ (X)Pl (J/)P1 (Z)
+ CayyP1(X)P2(¥) + CayyeP1(X)P2(¥)P1(2) + CyyyP3 (V) + CyyyP3(¥)P1(2)
+ szzzP4(Z) C)azzpl( ) (Z) + Cyzzzpl (J/)P3 (Z)
+ CoxzzP2 (X)P2(Z) + CyyzzP2 (V) P2(2) «— fourth order 9)

The rationale for picking this set of moments follows from Balsara [3]. Relative to the format followed in [3], a slight rear-
rangement of the functional forms has been made in the previous three equations to cast them in terms of the basis func-
tions. Analogous to Eq. (4), Eq. (7) shows the terms that have to be included to achieve second, third and fourth order
accuracy. Egs. (8) and (9) have a structure that is similar to Eq. (7) and the corresponding terms that are needed with increas-
ing accuracy are easily identified. The procedure for enforcing the divergence-free constraint is entirely similar to the one in
[3]. It consists of applying the differential form of the divergence-free condition V - B = 0 to all the polynomials in Egs. (7)-(9)
and setting the terms at each order to zero. While Balsara [3] illustrates this procedure in detail for second order, some de-
tails for the third and fourth order cases have been provided in Appendix A.

We now provide the formulae for obtaining the coefficients in Eq. (7) using the coefficients in Egs. (4)-(6). To obtain the
coefficients in Eq. (8) make the cyclic rotation of variables,a - b,b - ¢,c - a,X - y,y — zand z — x, in the formulae below.
Similarly, to obtain the coefficients in Eq. (9) make the cyclic rotation of variables, a—c,b - a,c - b,x > z,y > xand z —> y.
Note that the formulae in this section should be implemented in code in the same sequence as described here.

The description of the fourth order divergence-free reconstruction starts with this paragraph. Matching the modal basis
functions with cubic terms at the x = +1/2 boundaries gives:

Ay =5 (B;;y + B;yy ) Goyy = B;y 4 B;;y
1 —

B S ™
1 X X —

Qyry = 5 (By;rz + Byzz) xyzz = B;zz B;ZZ
‘l _

Qzzz = 2 ( 22z T zzz) Ozzz = B;;Z B)Z(ZZ

Eq. (10) gives us the coefficients ayyy, Gyyyy, Qyyz, Gxyyz, Qyzz Oxyzz, 22z aNd Ay in Eq. (7). Making the analogous match of the
cubic terms at the y = +1/2 boundaries in Eq. (8) give us b.,;, by,zz, bxzz, Dxyzz, Dxxzs Dxxyz bxxx @and byyy. It is worth pointing
out that making a cyclic rotation of the variables in Eq. (10) also yields the same coefficients that are needed in Eq. (8).
Matching the cubic terms at the z=+1/2 boundaries for Eq. (9) gives US Cux» Cxxxzr Cxxy» Cxxyzr Cxyys Cxyyz» Cyyy and €y, Notice
too that making another cyclic rotation of variables also yields the coefficients for Eq. (9). We now apply the divergence-free
constraint to the quartic terms in Egs. (7)-(9). After making an SVD minimization of the integral of the reconstructed mag-
netic energy over the zone w.r.t. the coefficients Gyy, Gy Gxxyy aNd Ay, (S€e Appendix A), the resulting constraints are:

7 3 3
Oxxxx = _Z(bmxy + Cxxxz)i, Ayxxy = _%Cxxyﬁ Ayxxz = _%bxxyﬁ Oxxyy = _%nyyzi, Qyxzz = _beyzz (11)

Notice that the right hand sides of Eq. (11) are available by this point in the computation so that Eq. (11) can be used to ob-
tain the coefficients Gy, dxxys Gxxxz Gxxyy AN Gy, in Eq. (7). A cyclic rotation of variables gives us the constraints for the
coefficients in Eq. (8) and yields by,y,, byyyz, bxyyy, byyzz and byyyy. Likewise a cyclic rotation of variables gives us the coefficients
in Eq. (9) and yields Crzzz, Cxzzz Cyzzzr Cxxzz and Cyyz,. All the terms that are evaluated in this paragraph will be needed in the
subsequent formulae when fourth order reconstruction is carried out. However, for reconstruction at third and second orders
they can all be set to zero.

The description of the third order divergence-free reconstruction starts with this paragraph. This paragraph also contin-
ues our description of the fourth order reconstruction. Matching the modal basis functions with quadratic terms at the
x =x1/2 boundaries gives:

1 1 -

Ay =5 (B;; + B;Y) — gt Gy = By — By
1 . -

ay; ZE(B;;+B;Z); Qxyz :B;;r 73;2 "
1 o 1 -

a;; = j (B)z(z+ + B)z(z ) - gaxxzd Axzz = B;; - B;Z

Eq. (12) provides ayy, Gyyy, yz, Gxyz, 0z and a,,, all of which are needed in Eq. (7). Making a cyclic rotation of variables in Eq.
(12) yields the analogous terms in Eq. (8), i.€. bz, by, bxz, bxyz, bxx and by, all of which are needed in Eq. (8). Likewise, another
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cyclic rotation of variables gives the coefficients Cyy, Cxxz Cxy» Cxyz Cyy and ¢y, that are needed in Eq. (9). We are now ready to
apply the constraints on the cubic terms in Eqgs. (7)-(9). After making an SVD minimization of the integral of the recon-
structed magnetic energy over the zone w.r.t. the coefficients a,, and a,., (see Appendix A) we get:

Ayxx = _%(bxxy + Cxxz)'-, axxy = _nyz/4; xxz = _bxyz/4 (13)

Eq. (13) gives us the coefficients dyy, dxxy and ax.in Eq. (7). Analogous terms in Egs. (8) and (9) can now be made via a cyclic
rotation of variables so that we obtain by,y, by, bxyy, Czzz, Cxzz and ¢y,. This paragraph again gives us all the terms that will be
needed in the subsequent formulae when third or fourth order reconstruction is carried out. However, for second order
divergence-free reconstruction the coefficients that have been obtained in this and the previous paragraph are set to zero.

Our description of the second order divergence-free reconstruction starts with this paragraph. The present paragraph also
continues our description of the third or fourth order reconstruction. Matching the modal basis functions with linear terms
at the x = +1/2 boundaries gives:

1 - 1] -
ay:§<3;++8; >_6axxy§ Uxy = (B;'H_B; >_10amy
l ; ] (14)

@= g (B 4 BY) gt Ga= (B ~B) 1o O

Eq. (14) provides the coefficients ay, axy, a, and a,, that are needed in Eq. (7). Analogous terms in Eqgs. (8) and (9) can now be
made via a cyclic rotation of variables. Thus one cyclic rotation of variables applied to Eq. (14) provides us b,, by, b, and by,.
Another such rotation of variables yields ¢, ¢y, ¢, and c,,. The constraint applied to the quadratic terms in Egs. (7)-(9) gives:

1 3 1

Uyx = _i(bxy"!‘cxz) _Eaxxxx _ﬁ

Analogous terms in Egs. (8) and (9) can now be made by applying cyclic rotations to variables in Eq. (15) and those rotations
yield by, and c,.
Matching the constant terms at the x = +1/2 boundaries gives:

1 _ 1 1 _ 1
aozi(B’{)*JrB’{) )*éaxx*%axxxﬁ aX:(B)(‘)Jr*B)(() )*Eaxxx (16)

(byyy + Cuzzz) (15)

Eq. (1) provides the coefficients ag and a, that are needed in Eq. (7). Analogous terms in Egs. (8) and (9) can now be made to
get bg, by, ¢p and c,. The constraint applied to the linear terms in Egs. (7)-(9) gives:

1
(ax +by +¢2) +ﬁ (Gxxe + byyy 4+ C22z) = 0 (17)

The coefficients in Eq. (16) are so constructed that, along with Eq. (17), they ensure (and are equivalent to) the integral form
of the divergence-free constraint:

(Byt —By )+ (Byt =By ) + (By =By ) =0 (18)

This completes our description of the divergence-free reconstruction on the unit cube.
In practical situations, one might want to carry out the same procedure on a zone of size Ax, Ay and Az in the x-, y- and z-
directions, respectively. Notice that Eq. (18) then becomes:

e (B =B ) o (B — By )+ (B — B ) =0 (19)
The problem can be mapped to a unit cube by dividing all the coefficients in Eqs. (4)-(6) by Ax, Ay and Az, respectively. The
method described in this section can now be applied to get the coefficients in Egs. (7)-(9) and all the coefficients in those
equations can subsequently be multiplied by Ax, Ay and Az, respectively. This completes our description of the diver-
gence-free reconstruction on any rectilinear mesh.

We make a few observations below:

(1) We observe that the normal components of the magnetic field in Eqs. (4)-(6) are indeed fourth order accurate in the
faces. Furthermore, specifying all the moments in Eqgs. (4)-(6) at the zone faces uniquely specifies all the coefficients in
Eqgs. (7)-(9) for the interior of that zone. Egs. (7)-(9) contain all the terms that one would need in a fourth order accu-
rate polynomial expansion for divergence-free functions. Thus all the fourth order accurate terms that are needed for
reconstructing a divergence-free vector field in the interior of a zone are already provided by their fourth order accu-
rate specification at the boundaries. The few remaining terms in Egs. (7)-(9) only help in matching the magnetic fields
exactly to the components at the boundaries. By dropping suitable terms in Eqs. (4)-(9) we can also see that all the
third order accurate terms that are needed for reconstructing a divergence-free vector field in the interior of a zone are
already provided by their third order accurate specification at the boundaries. A similar statement applies to the sec-
ond order accurate reconstruction.
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(2) Notice too that when carrying out adaptive mesh refinement of a divergence-free vector field by a refinement ratio of
three, we need to specify 9 degrees of freedom at each boundary. This is because a coarse mesh face could overlie nine
refined mesh faces, at which nine field components have been specified. The fourth order reconstruction presented
here has 10 degrees of freedom at each boundary, see Egs. (4)-(6). One degree of freedom can be relinquished either
by setting B}, = B}, or by setting B}, = B.. Thus the reconstruction has sufficient amount of freedom to make it use-
ful for carrying out adaptive mesh refinement with refinement ratios of three.

Balsara [3] provided formulae for carrying out adaptive mesh refinement of a divergence-free vector field by a refine-

ment ratio of two. The above point shows that a refinement ratio of three is also easy to achieve. Recursive application

of the algorithms makes it possible to achieve refinement ratios that are any multiples or two and three. The algorithm
presented here is dimensionally unsplit and offers analytic, closed form expressions for the reconstruction.

(4) Our formulation also minimizes the zone-averaged energy of the magnetic field. Since the pressure variable is derived
from the total energy density, the minimization of the zone-averaged magnetic energy helps keep the pressure posi-
tive especially in problems with a very low plasma-8. We will later see in Section 5 that it helps keep the pressure
positive when simulating the stringent test problem of a strong blast wave propagating through a very low-g plasma.

(5) The same transformations that were described in [4] for treating logically rectangular meshes with diagonal metrics
go over transparently for the reconstruction given here. As a result, there are no obstacles to using the present formu-
lation for designing MHD algorithms in cylindrical and spherical meshes. Similarly, one can use the present formula-
tion for carrying out adaptive mesh refinement on such curvilinear meshes.

(6) The present formulation should also help in making divergence-free prolongation which is very useful in the construc-
tion of divergence-free multigrid schemes for resistive or Hall MHD.

(3

~

3. Step-by-step description of the RK-WENO schemes for divergence-free MHD

The equations of ideal MHD can be cast in a conservative form that is suited for the design of higher order Godunov
schemes. In that form they become:
ouU OF 0G OH
E"Fa‘i‘@‘l-gfo (20)

where F, G and H are the ideal fluxes. Written out explicitly, Eq. (20) becomes:

p PUx pvy

PUx ,OU)%+P+BZ/8TC73)2(/4TC val/y—BxBy/47f

pvy pUyvy — BB, /ATt pv?+P+B*/8m — B} /AT
g pU; +3 pUxV; — BB, /4T N 2 pvyv; — ByB, /AT
ot| e x| (e+P+B?/8m)v, — By(v-B)/4n | (e+P+B*/8m)v, — By(V-B)/4m

Bx 0 —(UxBy — VyBX)

B, (vxBy — vyBy) 0

B, _(ysz - Z/sz) (UyBZ — UZBy)

Pz

poxv, — BB, /4T
pvyv, — BB, /4Tt
b pv:+P+B*/8m— B2 /4R
0z | (¢+P+B*/8T) v, — B,(v-B)/4T
(v2Bx — vxB;)
—(vyB; — v2By)

0

where p is the density, #, 7, and v, are the velocity components, By, B, and B, are the magnetic field components, y is the
adiabatic index and &= pv?/2 + P|(y — 1)+ B?/87 is the total energy. The equations for the density, momentum density
and energy density parallel those in the Euler equations and can be discretized using standard WENO reconstruction in space
along with Runge-Kutta formulations in time. While the magnetic fields seem to have a conservation law structure, an
examination of the flux vectors show that the equations of MHD obey the following symmetries:

F;=—Gs, Fs=-Hs, Gs=—H; (22)

These symmetries are also obeyed when any manner of non-ideal terms are introduced and are a fundamental consequence
of the induction equation, see Eq. (1). Balsara and Spicer [10] realized how to use this dualism between the flux components
and the electric fields to build electric fields at zone edges using the properly upwinded Godunov fluxes. Balsara [4]
introduced a better way of obtaining the electric fields at zone edges that avoids spatial averaging. The Balsara and Spicer
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[10] scheme is inherently second order accurate because of the spatial averaging. By overcoming this limitation, the scheme
in [4] is easily extended to all orders. Once the electric fields are obtained at requisite collocation points on the zone edges a
discrete version of Eq. (1) can be built, as shown in that paper. In that paper we also showed that Runge-Kutta time-discret-
izations could be used for MHD. We therefore describe the steps in the implementation of a Runge-Kutta time-discretiztion
for MHD. The spatial representation is provided by an efficient implementation of a WENO scheme for structured meshes. A
step-by-step description of the WENO scheme with Runge-Kutta time-stepping is provided below.

3.1. Divergence-free WENO reconstruction step

The first step in any finite volume scheme consists of obtaining a reconstruction of the field variables within a zone. Inclu-
sion of the appropriate moments of the flow yields a correspondingly high accuracy. Thus at any stage in a multi-stage RK
time-stepping scheme our first task is to obtain a representation of the flow in the following basis space:

U(x,,2) = Uy Po(X)Po (y)Po(2)
+ U2P1(X)Po(}’)P )+ UsPo( )Po(2) + YPo(y
+ UsPy(X)Po(y)Po(2) + UsPo(x)P2(y)Po(2) + U7Po(X)Po(y
+ UsPy (X)P1(y)Po(2) + UsPo (X)P1 (y)P1 (2) + UroP1 (X)Po(y)P1(2) ~ « third order
+ Uy, P5(x)Po(y)Po( (X)P3(y)Po(2) + U13Po(X)Po(y)Ps(2)
+U1aP2(X)P1(y)Po(2) + U1sP2(X)Po(¥)P1 (2) + UseP1 (X)P2(¥)Po(2) + Un7Po(x)Pa(y)Ps (2)
+ UigP; (X)Po(y)P2(2) + UisPo(X)P1 (y)P2(2) + UnoP1 (X)P1 (y)P1(z) ~ «— fourth order (23)

«— second order

o
—
N

o
—
N

time level for a fourth order scheme, with fewer modes needed for lower order schemes. The first five components of U; are
just the zone-averaged mass, momentum and total energy densities that are avallable in each zone. The last three compo-
averaged componer‘i.fs are available at the appropriate faces. Usmg WENO reconstruction in each of the faces we obtain
all the moments of Eqgs. (4)-(6 ) The results of Section 2 then gives us all the moments of Egs. (7) (9) which also gives us

Shu [29], Balsara and Shu [8], Dumbser and Kdser [23] and Balsara et al. [5,7]. In [7] we presented a WENO reconstruction
strategy that is very well-suited for structured meshes and we used that strategy here.

3.2. Flux and electric field evaluation step

A higher order scheme should also evaluate fluxes and electric fields with suitably high accuracy. Traditionally this has
been done by solving a large number of Riemann problems at a large number of quadrature points, as was done in Cockburn
and Shu [14]. A substantially simpler strategy was presented in Dumbser et al. [22] where the flux is viewed as a linear
combination of four vectors. The four vectors are: (a) the conserved variables to the left of the zone boundary given by
Ui+1/24(,2), (b) the conserved variables to the right of the zone boundary given by Ug;i+1/2k(¥.2), (c) the flux to the left
of the zone boundary given by F;.i+1/2.(y,2z) and (d) the flux to the right of the zone boundary given by Fg.j+1/2jk(y,2). The
strategy proposed by Dumbser et al. [22] applies to the space-time domain. We specialize it for the case where the time-
averaging is not needed. Below it is instantiated for the linearized Riemann solver at any general point (y,z) on the x-bound-
ary “i+1/2,j,k”. Such a flux is described by:

1
Fii12j6(,2) = E(FL:iJrl/zj,k(yaZ) + Frit1/2j4,2)) = |A(Y, 2)|(Uris12ik (Y, 2) = ULit1/2j6,2)) (24)

As written, the matrix |A(y,z)| would have to be evaluated anew at each point (y,z) on the zone boundary. The essential
insight from Dumbser et al. [22] consists of realizing that |A(y,z)| can be evaluated once at the barycenter of the zone bound-
ary. This is equivalent to freezing the dissipation model all over the zone boundary and it also makes the flux a linear func-
tion of the four vectors mentioned above. Uy;j+1/21(¥,2) and Ug;i+1/2,1(y,2) are easily obtained once the reconstruction from
Eq. (23) is available in the two zones that abut the zone face. In the companion ADER-WENO paper we present a very effi-
cient strategy for obtaining F(x,y,z) within a zone when Eq. (23) is available in the zone. We also present explicit nodal loca-
tions within a control volume at which the vector of conserved variables, Eq. (23), needs to be evaluated. The fluxes in Eq.
(21) are then evaluated at those nodes by using the vector of conserved variables. Once that is done, the companion ADER-
WENO paper presents explicit formulae for obtaining a modal representation of the fluxes within each zone by using their
nodal values. Appendix B, Section 3.2 and Appendix C from [7] present explicit formulae for second, third and fourth order
schemes, respectively. Since a single stage of a Runge-Kutta scheme does not seek to make a space-time representation of
the solution, one only needs to use the nodes that correspond to 7 = 0. Similarly, only those modes that are free of time-evo-
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lution are needed. Appendix B of this paper shows how the third order ADER-WENO scheme described in Section 3.2 of [7]
can be transcribed to form the much-simplified formulae needed for a third order WENO scheme with Runge-Kutta time-
stepping. As a result, Fy.i11/2x(y,2) and Fgi.1/2jk(y,2) are also easily obtained. With the frozen dissipation matrix, the right
hand side of Eq. (24) is a linear combination of modal basis functions. Averaging Eq. (24) over the (y,z) coordinates of an
x-face of the reference element only entails evaluating the integral analytically once and is easily done by using a symbolic
manipulation package. A similar strategy can be applied at the y and z-faces.

The time-update can now be explicited for any stage in a multi-stage Runge-Kutta method. For instance, picking the sec-
ond stage from Eq. (28) of the next section we obtain the equation that enables us to update the zone-centered conserved
variables from a time t" to a time t™! = t" + At. It is given by

— — At — = At — — At — _
U?fk] =Uljx— Ax (Fiv1p2ik — Fic1j24k) — Ay (Gijyrj2k — Gij-1/24) — Az (Hijri12 = Hijr-172) (25)

Yee [40] showed that the divergence-free evolution of the field requires that a face-centered representation of the mag-
netic field be updated using an edge-centered representation of the electric field. Balsara and Spicer [10] showed that specific
components of the flux vectors in Eq. (21) are indeed the components of the electric field from Eq. (2). They showed that the
upwinded flux function can then be used to obtain the requisite properly upwinded components of the electric field. To
instantiate the magnetic field update, we need to pick a specific stage in a multi-stage Runge-Kutta scheme. Let us do this
for the second stage in Eq. (27). The magnetic field components are then updated from a time t" to a time t**! = t" + At by the
following update equations

_ _ At _ _ _ _

B;,Z]]/zj,k =Biiv1/2jk — AyAz (AZEzi1 254172k — DZEzic1 251720 + AYEyii125k-172 — AVEyi/2jk41/2)

_ _ At _ _ _ _

Byl 1ok =Bij 1ok — Az (AXEyij1/2441/2 — AXExij1j2k-172 + AZEzi 125 172k — AZEzi1/2j-1/2.k) (26)

_ _ t _ _ _ _
BQL-]‘kH 2 =Bk — AxAy (AXExij1/20+1/2 — AXExijijaki1/2 + AVEyiii2jke12 — AVEyi 12k41/2)

The electric fields in Eq. (26) are also easily obtained by averaging Eq. (24) suitably over the edges of the reference element
and picking out the appropriate components of the fluxes. As in Dumbser et al. [22], we freeze the dissipation matrix at the
barycenter of each edge, which makes the right hand side of Eq. (24) a linear combination of modal basis functions. Four
electric field contributions are available at each edge, one from each of the four faces that come together at that edge. These
four electric fields along each edge are averaged arithmetically, as in [4], to obtain the final electric field at the edge of inter-
est. Balsara and Spicer [10] realized that the correct amount of upwinding for the electric fields in Eq. (26) could be a delicate
issue, a topic that has also been addressed by Londrillo and DelZanna [32] and Gardiner and Stone [26]. Stable magnetic field
evolution is achieved by drawing on those advances. This completes our description of the electric field evaluation for a spe-
cific stage in our multi-stage RK time-update. Similar update equations can be written for each and every stage of the RK
time-updates detailed in the next subsection.

3.3. Multi-stage Runge—Kutta time-update step

The strong stability preserving Runge-Kutta schemes from Shu and Osher [37,38] are used for carrying out a time-update.
At each stage of the multi-stage RK update, we apply the steps from Sections 3.1 and 3.2 to obtain the fluxes at each face and
the electric field components at each edge. The Runge-Kutta time-stepping schemes consist of writing Eq. (1) for the mag-
netic field evolution and Eq. (20) for the evolution of the mass, momentum and energy densities in the form

du
by ¢ 27
i =L @7)
where L(U) is a discretization of the spatial operator. The second order TVD Runge-Kutta scheme is simply the Heun scheme:
1
U =U" - ALL(U"
AU (28)
Ut ="+ AL (UY)
The third order TVD Runge-Kutta scheme is given by:
U = U" + AtL(UY)
u? =3y Ly lAtL(U“>)
4° "2 4 (29)
1 2 2
1 _ T @ o2 (2)
U 73U +3U +3AtL(U )

The fourth order RK scheme from Shu and Osher [37] is rather complicated to implement and was not implemented here.
As a result, the temporal update of the spatially fourth order scheme was always done with Eq. (29). For most applications
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this yields a serviceable scheme that functions at a robust Courant number. However, when demonstrating the order of
accuracy at fourth order in Section 4 we had to reduce the Courant number by a factor of ~0.396 for every doubling
of the number of zones. This had to be done so that the third order temporal accuracy from Eq. (29) keeps step with
the fourth order spatial accuracy. This deficiency is ameliorated by the ADER (for Arbitrary Derivative Riemann Problem)
schemes presented in [7].

4. Accuracy analysis

The schemes presented here handily meet their design accuracies in one dimension. It is therefore interesting to present
multi-dimensional tests showing high order of accuracy. Here we present a couple of demonstrations of high accuracy in two
and three dimensions. A more extensive accuracy analysis for hydrodynamic and MHD problems has been catalogued in the
companion paper on ADER-WENO schemes.

A couple of points need to be made about the simulations presented here. First, we used the slopes from the r =3 WENO
reconstruction of Jiang and Shu [29] for our second order scheme. As a result, the slopes have one more order of accuracy
than the accuracy that would be furnished by a TVD-preserving limiter. This yields a very superior second order scheme.
Second, for all the accuracy analyses presented in this section involving the spatially fourth order scheme, the Courant num-
ber was always decreased by a factor of 0.396 for every doubling of the number of zones.

4.1. Magnetized isodensity vortex in two dimensions

This test problem as described in [4] consists of a magnetized vortex moving across a domain given by [-5,5] x [-5,5] at
an angle of 45° for a time of 10 units. For the fourth order scheme the domain is increased to [-10,10] x [-10,10] and the
simulation time is increased to 20 units. This is done because the magnetic field has a Gaussian taper with increasing radius
and the smaller domain retains a small but significant amount of magnetic field at the boundary. Had we used the smaller
domain for the fourth order scheme, this small but spurious magnetic field would actually have been picked up by the
scheme and its order property would have been damaged. The problem is initialized with an unperturbed flow of
(p,P, v, vy,Bx,By) =(1,1,1,1,0,0). All boundaries are periodic. The ratio of the specific heat is set to y = 5/3. The vortex is set
up as a fluctuation of the unperturbed flow in the velocities and the magnetic field given by:

. K ;
(60, 60y) = 51—y, x)

(6By, 0By) =5 1) (=y.x)

The pressure fluctuation can be written as

=gl 0= Gy

The density is set to unity. A Courant number of 0.4 was used for all the second and third order test problems and also for the
coarsest mesh in the fourth order test problem. A linearized Riemann solver from Balsara [1] was used.

Table 1 shows the results of the accuracy analysis. The error is measured in the x-component of the magnetic field. All the
schemes meet their design accuracies. Notice that the third order scheme at 128 x 128 zone resolution shows the same L;
error as the second order scheme at 256 x 256 zone resolution. We see therefore that higher order schemes deliver a much
improved solution quality compared to lower order schemes on meshes of the same resolution. Furthermore, the higher or-
der schemes need far fewer zones to achieve the same accuracy as a lower order scheme. Table 1 therefore illustrates the
utility of higher order schemes very nicely.

Table 1
The accuracy analysis for the two-dimensional isodensity vortex problem is tabulated here using the second, third and fourth order schemes presented in this
paper. The error is measured in the x-component of the magnetic field.

Method Number of zones L, error L, order L., error L., order
Second order RK-WENO 32 x32 1.15689 x 102 0.189318
64 x 64 3.74953 x 1073 1.62 6.00319 x 102 1.66
128 x 128 9.57467 x 10~ 1.97 1.53503 x 1072 1.97
256 x 256 2.39584 x 10~ 2.00 3.83531 x 103 2.00
Third order RK-WENO 32 x 32 5.53837 x 1073 9.79331 x 1072
64 x 64 9.77841 x 10~* 2.50 1.75191 x 102 2.48
128 x 128 1.27506 x 104 2.94 236221 x 1073 2.89
256 x 256 1.60549 x 10> 2.99 2.99136 x 10~* 2.98
Fourth order RK-WENO 32 x 32 2.96778 x 103 0.103623
64 x 64 156211 x 104 4.25 5.21875 x 107> 431

128 x 128 7.33125 x 106 4.41 2.45447 x 1074 4.41
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Table 2
The accuracy analysis for the three-dimensional torsional Alfven wave problem is presented here using the second, third and fourth order schemes. The errors
are measured in the x-component of the magnetic field.

Method Number of zones L, error L, order L., error L., order
Second order RK-WENO 8x8x8 3.46827 x 1072 5.17569 x 1072
16 x 16 x 16 2.25885 x 1072 0.62 3.57951 x 1072 0.53
32 % 32 x 32 4.87419 x 103 2.21 7.68322 x 103 222
48 x 48 x 48 1.77966 x 103 2.48 2.79747 x 1073 2.49
Third order RK-WENO 8x8x8 3.56043 x 102 5.32694 x 102
16 x 16 x 16 1.65967 x 102 1.10 2.56119 x 102 1.06
32 x 32 x 32 2.65506 x 10> 2.64 417435 x 103 2.62
48 x 48 x 48 8.05482 x 104 294 1.27225 x 1073 2.93
Fourth order RK-WENO 8x8x8 2.52284 x 1072 3.82295 x 1072
16 x 16 x 16 1.17975 x 1073 4.42 1.85115 x 103 437
32 % 32 x 32 5.29206 x 10> 4.48 8.38025 x 10~° 4.47

4.2. Torsional Alfven wave propagation in three dimensions

The previous test problem used a flow that was an exact, equilibrium structure of the governing equations. Although tor-
sional Alfven waves also satisfy the governing equations, they are susceptible to parametric instabilities. These instabilities
exist at low values of plasma-p, see Goldstein [27] and Del Zanna et al. [19], and also at high values of plasma-p, see Jayanti
and Hollweg [28]. The present test problem is designed to ameliorate such instabilities as far as possible.

In this problem we initialize a torsional Alfven wave along the x’ axis of an (x',y’,z’) coordinate system with the following
parameters

2n
p=1, P=1000, @:T(x’ —2t)
ve=1 vy=¢cos®P, v,=¢sin®

B, = v4mnp, B, =-¢&\/4npcos®, B, =—&e\/4npsind

Here we take ¢ = 0.02 and / = +/3. The magnetic vector potential is also useful when initializing a divergence-free magnetic
field on a mesh and is given by

Ay =0, Ay =¢l\/p/ncos®, A, = /4npy + &i\/p/Tsin P

The actual problem is solved on a unit cube in the (x,y,z) coordinate frame which is rotated relative to the (x',y’,z’) coordinate
system. The rotation matrix is called A and is given by

COSycos ¢ —cosfsingsiny  cosysing + cosfcos¢siny  sinysind
A= | —sinycos¢ —cosfsingcosy —siny sin¢ + cosOcos¢cosy cosy sinl
sinfsin ¢ —sinfcos ¢ cos o

where ¢ = —1/4, 0 = sin”! (—\/2/3> and y = sin™" ((\/f — \/€> /4). As a result, the position vector r’ in the primed frame

transforms to the position vector r in the unprimed frame as r = Ar’. Other vectors transform similarly. Other formulations of
the rotation matrix are indeed possible, but the one in the above equation works very well. Application of the rotation matrix
makes the wave propagate along the diagonal of the unit cube. The wave propagates at a speed of 2 units. The problem is

stopped at a time of v/3/2 by which time the wave has propagated once around the unit cube. A Courant number of 0.3
was used for all the second and third order test problems and also for the coarsest mesh in the fourth order test problem.
A linearized Riemann solver was used.

Table 2 presents the accuracy analysis for schemes up to fourth order. Please recall that the combination of a spatially
fourth order scheme with a temporally third order RK scheme required us to use a diminishing Courant number with
increasing resolution at fourth order and only at fourth order. As a result, the accuracy analysis of the fourth order scheme
had to be restricted to smaller meshes. In [7], we present schemes that overcome this limitation. Table 2 is nevertheless very
illustrative. It shows that all the schemes presented here meet their design accuracies. We see that even on very coarse
meshes, such as the 16 x 16 x 16 mesh in Table 1, the fourth order scheme offers more than one order of magnitude
improvement over the second order scheme. Table 2 therefore demonstrates the utility of higher order schemes.

5. Test problems

In this section we present several tests for the schemes that have been designed here. Because the divergence-free recon-
struction of the magnetic field only comes to the fore in multiple dimensions, all of the tests presented here are inherently
two-dimensional and were run with a Courant number of 0.4.
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5.1. Numerical dissipation and long-term decay of alfven waves in two dimensions

This test problem was first presented in [4] and examines the dissipation of torsional Alfven waves in two dimensions.
Other practitioners, Ryu et al. [36], Balsara and Spicer [10] and Toth [39], have also see the utility of Alfven wave decay
in revealing the numerical dissipation of MHD schemes. Here the torsional Alfven waves propagate at an angle of
tan~'(1/r)=tan"'(1/6) = 9.462° to the y-axis through a domain given by [-r/2,r/2] x [-r/2,r/2] with r=6. The problem
was initialized on a computational domain with 120 x 120 zones. Periodic boundary conditions were enforced. The pressure
and density are uniformly initialized as Pp = 1 and po = 1. The unperturbed velocity and unperturbed magnetic field are given
by 7o =0 and By = 1. The amplitude of the Alfven waves is parametrized by ¢, which is set to 0.2. The simulation was stopped
at 129 time units by which time the waves had crossed the domain several times. The CFL number was set to 0.4 for all the
schemes presented here. The direction of the wave propagation along the unit vector can be written as
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Fig. 1. The log-linear plots show the decay of torsional Alfven waves that propagate obliquely on a two-dimensional square. The top two panels show the
decay of the maximum z-velocity and the maximum z-component of the magnetic field when second, third and fourth order schemes are used with an HLLE
Riemann solver. The bottom two panels show the same information when a linearized Riemann solver is used. For comparison purposes, the results from a
TVD scheme with MC limiter are also shown. Temporally third order RK updates were used for the spatially fourth order scheme. Observe that the decay is
substantially reduced with increasing spatial order. Also observe that the linearized Riemann solver provides a substantial improvement to the solution,
especially at lower orders.